模型的体积、质量、质心位置和转动惯量计算

函数描述

计算模型的体积、质量、质心位置和转动惯量。

参数

  • π\pi:圆周率。
  • LmmL_{\text{mm}}:模型总长度(mm)。
  • Top0\text{Top0}:顶点位置的无量纲量。
  • RnmmR_{\text{nmm}}:空化器半径(mm)。
  • NconN_{\text{con}}:模型节数。
  • Part\text{Part}:每节的无量纲长度。
  • LfL_f:前体长度(mm)。
  • ConeLen\text{ConeLen}:每节的长度(mm)。
  • BaseDiam\text{BaseDiam}:每节的末端直径(mm)。
  • LhL_h:腔体长度(mm)。
  • DLhD_{Lh}:腔体左直径(mm)。
  • DRhD_{Rh}:腔体右直径(mm)。
  • ρf\rho_f:前体材料密度(kg/m³)。
  • ρa\rho_a:后体材料密度(kg/m³)。
  • ρh\rho_h:腔体材料密度(kg/m³)。

返回值

  • TMkgTM_{\text{kg}}:模型总质量(kg)。
  • XcX_c:质心位置(与模型长度相关)。
  • IcI_c:质心处的转动惯量(kg*mm²)。

计算公式

1. 初始化变量

  • SumLen\text{SumLen}:每节的累积长度(mm)。
  • RR:每节的半径(mm)。
  • QfwQ_{\text{fw}}:前体各节的体积(mm³)。
  • QawQ_{\text{aw}}:后体各节的体积(mm³)。
  • MfwM_{\text{fw}}:前体各节的质量(kg)。
  • MawM_{\text{aw}}:后体各节的质量(kg)。
  • XciX_{\text{ci}}:各节的质心位置(mm)。

2. 计算顶点位置和空化器体积

Top=Top0×Lmm\text{Top} = \text{Top0} \times L_{\text{mm}}
Qn=π×Rnmm2×Top/3Q_n = \pi \times R_{\text{nmm}}^2 \times \text{Top} / 3

3. 计算每节的长度和半径

SumLen[i]=Part[i]×Lmm\text{SumLen}[i] = \text{Part}[i] \times L_{\text{mm}}
R[i]=BaseDiam[i]/2R[i] = \text{BaseDiam}[i] / 2

4. 找到前体末端的锥体编号

Lf>SumLen[i]L_f > \text{SumLen}[i]
Nf=iN_f = i
NPf=2×i+4\text{NPf} = 2 \times i + 4
NPa=2×NconNPf+8\text{NPa} = 2 \times N_{\text{con}} - \text{NPf} + 8

5. 计算腔体参数

RLh=DLh/2R_{Lh} = D_{Lh} / 2
RRh=DRh/2R_{Rh} = D_{Rh} / 2
Lhx=LmmLhL_{hx} = L_{\text{mm}} - L_h
Rfh=RLh+(LfLhx)×(RRhRLh)/LhR_{fh} = R_{Lh} + (L_f - L_{hx}) \times (R_{Rh} - R_{Lh}) / L_h

6. 计算每节的体积

6.1 前体部分

LfConeLen[0]L_f \leq \text{ConeLen}[0]
Rf=Rnmm+Lf×(R[0]Rnmm)/ConeLen[0]R_f = R_{\text{nmm}} + L_f \times (R[0] - R_{\text{nmm}}) / \text{ConeLen}[0]
Qfw[0]=π×Lf×(Rf2+Rnmm2+Rf×Rnmm)/3Q_{\text{fw}}[0] = \pi \times L_f \times (R_f^2 + R_{\text{nmm}}^2 + R_f \times R_{\text{nmm}}) / 3
Qaw[0]=π×(ConeLen[0]Lf)×(R[0]2+Rf2+R[0]×Rf)/3Q_{\text{aw}}[0] = \pi \times (\text{ConeLen}[0] - L_f) \times (R[0]^2 + R_f^2 + R[0] \times R_f) / 3

6.2 后体部分

Lf>SumLen[j]L_f > \text{SumLen}[j]
Rf=R[j1]+(LfSumLen[j1])×(R[j]R[j1])/ConeLen[j]R_f = R[j-1] + (L_f - \text{SumLen}[j-1]) \times (R[j] - R[j-1]) / \text{ConeLen}[j]
Qfw[j]=π×(LfSumLen[j1])×(Rf2+R[j1]2+Rf×R[j1])/3Q_{\text{fw}}[j] = \pi \times (L_f - \text{SumLen}[j-1]) \times (R_f^2 + R[j-1]^2 + R_f \times R[j-1]) / 3
Qaw[j]=π×(SumLen[j]Lf)×(R[j]2+Rf2+Rf×R[j])/3Q_{\text{aw}}[j] = \pi \times (\text{SumLen}[j] - L_f) \times (R[j]^2 + R_f^2 + R_f \times R[j]) / 3

7. 计算每节的质量

Mfw[i]=ρf×Qfw[i]/1000M_{\text{fw}}[i] = \rho_f \times Q_{\text{fw}}[i] / 1000
Maw[i]=ρa×Qaw[i]/1000M_{\text{aw}}[i] = \rho_a \times Q_{\text{aw}}[i] / 1000

8. 计算总体积

Qf=QfwQ_f = \sum Q_{\text{fw}}
Qa=QawQ_a = \sum Q_{\text{aw}}
Q=Qf+Qa+QnQ = Q_f + Q_a + Q_n

9. 计算腔体体积

Qh=π×Lh×(RLh2+RLh×RRh+RRh2)/3Q_h = \pi \times L_h \times (R_{Lh}^2 + R_{Lh} \times R_{Rh} + R_{Rh}^2) / 3

10. 计算模型质量

Lf0L_f \neq 0
Mn=ρf×Qn/1000M_n = \rho_f \times Q_n / 1000
Mf=ρf×Qf/1000M_f = \rho_f \times Q_f / 1000
Ma=ρa×Qa/1000M_a = \rho_a \times Q_a / 1000
Mh=ρh×Qh/1000M_h = \rho_h \times Q_h / 1000

TMg=Mn+Mf+MaTM_g = M_n + M_f + M_a

LfLhxL_f \leq L_{hx}
TMg=Mn+Mf+MaQh×ρa/1000TM_g = M_n + M_f + M_a - Q_h \times \rho_a / 1000

11. 计算模型平均密度

ρ=1000×TMg/Q\rho = 1000 \times TM_g / Q

12. 计算质心位置

Xc=(Xcf×(Mf+Mn)+Xca×Ma)/(Mf+Mn+Ma)X_c = (X_{\text{cf}} \times (M_f + M_n) + X_{\text{ca}} \times M_a) / (M_f + M_n + M_a)

13. 考虑腔体

LfLhxL_f \leq L_{hx}
Xc=(Xc×(Mf+Ma+Mn)Xch×(Qh×ρa/1000))/(Mn+Mf+Ma(Qh×ρa/1000))X_c = (X_c \times (M_f + M_a + M_n) - X_{\text{ch}} \times (Q_h \times \rho_a / 1000)) / (M_n + M_f + M_a - (Q_h \times \rho_a / 1000))

14. 计算转动惯量

β=180\beta = 180^\circ
Iof=0I_{\text{of}} = 0

Iof=Rnmm2×Top3×(0.2×Rnmm2/Top2+2/15)I_{\text{of}} = R_{\text{nmm}}^2 \times \text{Top}^3 \times (0.2 \times R_{\text{nmm}}^2 / \text{Top}^2 + 2 / 15)

Iof=(12×BaseDiam[i])2×((12×BaseDiam[i])2×ConeLen[i]+4×(Part[i]×Lmm)3(Part[i1]×Lmm)3)/3I_{\text{of}} = \sum \left( \frac{1}{2} \times \text{BaseDiam}[i] \right)^2 \times \left( \left( \frac{1}{2} \times \text{BaseDiam}[i] \right)^2 \times \text{ConeLen}[i] + 4 \times (\text{Part}[i] \times L_{\text{mm}})^3 - (\text{Part}[i-1] \times L_{\text{mm}})^3 \right) / 3

Iof=Iof×π×ρf/4×1012I_{\text{of}} = I_{\text{of}} \times \pi \times \rho_f / 4 \times 10^{12}

Ioa=IofI_{\text{oa}} = I_{\text{of}}

Ioa=(12×BaseDiam[i])2×((12×BaseDiam[i])2×ConeLen[i]+4×(Part[i]×Lmm)3(Part[i1]×Lmm)3)/3I_{\text{oa}} = \sum \left( \frac{1}{2} \times \text{BaseDiam}[i] \right)^2 \times \left( \left( \frac{1}{2} \times \text{BaseDiam}[i] \right)^2 \times \text{ConeLen}[i] + 4 \times (\text{Part}[i] \times L_{\text{mm}})^3 - (\text{Part}[i-1] \times L_{\text{mm}})^3 \right) / 3

Ioa=Ioa×π×ρa/4×1012I_{\text{oa}} = I_{\text{oa}} \times \pi \times \rho_a / 4 \times 10^{12}

Io=Iof+IoaI_o = I_{\text{of}} + I_{\text{oa}}

Lf=0L_f = 0
Io=IoaI_o = I_{\text{oa}}

Lf=LmmL_f = L_{\text{mm}}
Io=IofI_o = I_{\text{of}}

Ic=IoTMkg×(Xc×Lmm)2I_c = I_o - TM_{\text{kg}} \times (X_c \times L_{\text{mm}})^2

Python代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def CalcModel(self):
# PI, Lmm, Top0, Rnmm, Ncon, Part, Lf, ConeLen, BaseDiam, Lh, DLh, DRh, Rhof, Rhoa, Rhoh
"""
计算模型的体积、质量、质心位置和转动惯量。

参数:
PI (float): 圆周率。
Lmm (float): 模型总长度(mm)。
Top0 (float): 顶点位置的无量纲量。
Rnmm (float): 空化器半径(mm)。
Ncon (int): 模型节数。
Part (list of float): 每节的无量纲长度。
Lf (float): 前体长度(mm)。
ConeLen (list of float): 每节的长度(mm)。
BaseDiam (list of float): 每节的末端直径(mm)。
Lh (float): 腔体长度(mm)。
DLh (float): 腔体左直径(mm)。
DRh (float): 腔体右直径(mm)。
Rhof (float): 前体材料密度(kg/m^3)。
Rhoa (float): 后体材料密度(kg/m^3)。
Rhoh (float): 腔体材料密度(kg/m^3)。

返回:
TMkg (float): 模型总质量(kg)。
Xc (float): 质心位置(与模型长度相关)。
Ic (float): 转动惯量(与质心相关,kg*mm^2)。
"""
# 取回变量
# 点集分辨率
DPI = self.DPI
# 模型的节数
Ncon = self.Ncon
# 圆周率,瞎注释啊哈哈哈哈
PI = self.PI
# 顶点的无量纲位置
Top0 = self.Top0
# 模型总长度
Lmm = self.Lmm
# 空化器半径,单位毫米
Rnmm = self.Rnmm
# 美节的无量纲长度
Part = self.Part
# 模型前体(Forebody)的长度
Lf = self.Lf
# 每节长度,单位毫米
ConeLen = self.ConeLen
# 每节末端直径
BaseDiam = self.BaseDiam
# 模型腔体长度,单位毫米
Lh = self.Lh
# 模型腔体左端直径
DLh = self.DLh
# 模型腔体右端直径
DRh = self.DRh
# 模型前体(Forebody)部分的材料密度 (float): 前体材料密度(kg/m^3)。
Rhof = self.Rhof
# Rhoa (float): 后体材料密度(kg/m^3)。
Rhoa = self.Rhoa
# Rhoh (float): 腔体材料密度(kg/m^3)。
Rhoh = self.Rhoh
# 空化器直径
Dnmm = self.Dnmm
# 空化器锥角
Beta = self.Beta

# 初始化变量
# mm,这里就是将无量纲各节末端长度转换为mm量纲,并非求和。
SumLen = np.zeros(DPI)
# 每一节末端半径实际长度
R = np.zeros(DPI)
# 存储模型前体(Forebody)各节的体积
Qfw: ndarray = np.zeros(DPI)
# 存储模型后体(Aftbody)各节的体积
Qaw = np.zeros(DPI)
# 用于存储模型前体(Forebody)各节的质量
Mfw = np.zeros(DPI)
# 存储模型后体(Aftbody)各节的质量
Maw = np.zeros(DPI)
# 存储模型各节的质心位置
Xci = np.zeros(DPI)

# 计算
Top = Top0 * Lmm # 顶点位置(mm)
Qn = PI * Rnmm ** 2 * Top / 3.0 # 空化器体积(mm^3)

# 计算每节的长度和半径
for i in range(Ncon):
SumLen[i] = Part[i] * Lmm # 每节的长度(mm)
R[i] = BaseDiam[i] / 2.0 # 每节的半径(mm)

# 找到前体末端的锥体编号
i = 0
# Lf 是前体长度
while Lf > SumLen[i]:
i += 1
# 前体末端锥体编号
Nf = i
NPf = 2 * i + 4 # 前体多边形节点个数
NPa = 2 * Ncon - NPf + 8 # 后体多边形节点个数

RLh = DLh / 2.0 # 腔体左半径(mm)
RRh = DRh / 2.0 # 腔体右半径(mm)
Lhx = Lmm - Lh # 无腔体部分长度(mm)
if Lf > Lhx:
Rfh = RLh + (Lf - Lhx) * (RRh - RLh) / Lh # 前体端空心半径(mm)

# 计算每节的体积
if Lf <= ConeLen[0]:
Rf = Rnmm + Lf * (R[0] - Rnmm) / ConeLen[0]
Qfw[0] = PI * Lf * (Rf ** 2 + Rnmm ** 2 + Rf * Rnmm) / 3.0
Qaw[0] = PI * (ConeLen[0] - Lf) * (R[0] ** 2 + Rf ** 2 + R[0] * Rf) / 3.0
for i in range(1, Ncon):
Qfw[i] = 0.0
Qaw[i] = PI * ConeLen[i] * (R[i] ** 2 + R[i - 1] ** 2 + R[i] * R[i - 1]) / 3.0
else:
for j in range(1, Ncon):
if Lf <= SumLen[j]:
Rf = R[j - 1] + (Lf - SumLen[j - 1]) * (R[j] - R[j - 1]) / ConeLen[j]
Qfw[0] = PI * ConeLen[0] * (R[0] ** 2 + Rnmm ** 2 + R[0] * Rnmm) / 3.0
Qaw[0] = 0.0
for i in range(1, j):
Qfw[i] = PI * ConeLen[i] * (R[i] ** 2 + R[i - 1] ** 2 + R[i] * R[i - 1]) / 3.0
Qaw[i] = 0.0
Qfw[j] = PI * (Lf - SumLen[j - 1]) * (Rf ** 2 + R[j - 1] ** 2 + Rf * R[j - 1]) / 3.0
Qaw[j] = PI * (SumLen[j] - Lf) * (R[j] ** 2 + Rf ** 2 + Rf * R[j]) / 3.0
for i in range(j + 1, Ncon):
Qfw[i] = 0.0
Qaw[i] = PI * ConeLen[i] * (R[i] ** 2 + R[i - 1] ** 2 + R[i] * R[i - 1]) / 3.0
break

# 计算每节的质量
for i in range(Ncon):
Mfw[i] = Rhof * Qfw[i] / 1e3
Maw[i] = Rhoa * Qaw[i] / 1e3

Qf = sum(Qfw) # 前体体积
Qa = sum(Qaw) # 后体体积
Q = Qf + Qa + Qn # 模型总体积

# 计算腔体体积
Qh = PI * Lh * (RLh ** 2 + RLh * RRh + RRh ** 2) / 3.0 # mm^3

# 计算模型质量
if Lf != 0.0:
Mn = Rhof * Qn / 1e3
Mf = Rhof * Qf / 1e3
Ma = Rhoa * Qa / 1e3
Mh = Rhoh * Qh / 1e3
else:
Mn = Rhoa * Qn / 1e3
Mf = 0.0
Ma = Rhoa * Qa / 1e3
Mh = Rhoh * Qh / 1e3

TMg = Mn + Mf + Ma # 不考虑腔体的质量
if Lf <= Lhx:
if Rhoh == 0.0:
TMg = Mn + Mf + Ma - Qh * Rhoa / 1e3
else:
TMg = Mn + Mf + Ma - Qh * Rhoa / 1e3 + Mh
else:
Qhf = PI * (Lf - Lhx) * (RLh ** 2 + Rfh * RLh + Rfh ** 2) / 3.0 # 前体部分空心体积
Qha = PI * (Lmm - Lf) * (Rfh ** 2 + Rfh * RRh + RRh ** 2) / 3.0 # 后体部分空心体积
if Rhoh == 0.0:
TMg = Mn + Mf + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3)
else:
TMg = Mn + Mf + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3) + Mh

# 计算模型平均密度
Rho = 1e3 * TMg / Q

# 确定中段截面
Imid = 0
for i in range(1, Ncon):
if BaseDiam[i] > BaseDiam[i - 1]:
Imid = i
# Xp 在 CalcModel 中代表了模型的中段截面的相对位置,不知道是否共享了啊
if Imid == Ncon:
Xp = 1.0 - 4.0 * Q / (PI * Lmm * BaseDiam[Ncon] ** 2)
elif BaseDiam[Imid] > BaseDiam[Ncon] and 1.0 - Part[Imid] < 0.02:
Lu = 1.0 / Part[Imid]
Xp = (0.67 - 0.75 * Lu + 0.2 * Lu ** 2) / (1.0 - Lu + 0.25 * Lu ** 2)
elif BaseDiam[Imid] == BaseDiam[Ncon]:
Lu = 1.0 / Part[Imid]
work = 0.5 * (BaseDiam[0] - Dnmm) / ConeLen[0]
La = Lmm * Part[Imid] / BaseDiam[Imid]
Xp = (0.73 + 0.67 * La * (Lu ** 2 - 1.0)) / (Lu * (1.57 + 1.33 * La * (Lu ** 2 - 1.0)))

# 计算前体的质心
if Nf > 1:
if BaseDiam[0] == Dnmm:
Xci[0] = ConeLen[0] / 2.0
else:
hi = R[0] * ConeLen[0] / (R[0] - Rnmm)
xc1 = SumLen[0] - hi / 4.0
xc2 = - (hi - ConeLen[0]) / 4.0
Q1 = PI * R[0] ** 2 * hi / 3.0
Q2 = PI * Rnmm ** 2 * (hi - ConeLen[0]) / 3.0
Xci[0] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)

for i in range(1, Nf - 1):
if BaseDiam[i] == BaseDiam[i - 1]:
Xci[i] = SumLen[i] - ConeLen[i] / 2.0
else:
hi = R[i] * ConeLen[i] / (R[i] - R[i - 1])
xc1 = SumLen[i] - hi / 4.0
xc2 = SumLen[i] - ConeLen[i] - (hi - ConeLen[i]) / 4.0
Q1 = PI * R[i] ** 2 * hi / 3.0
Q2 = PI * R[i - 1] ** 2 * (hi - ConeLen[i]) / 3.0
Xci[i] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)

if Rf * 2.0 == BaseDiam[Nf - 1]:
Xci[Nf] = Lf - (Lf - SumLen[Nf - 1]) / 2.0
else:
hi = Rf * (Lf - SumLen[Nf - 1]) / (Rf - R[Nf - 1])
xc1 = Lf - hi / 4.0
xc2 = Lf - (Lf - SumLen[Nf - 1]) - (hi - (Lf - SumLen[Nf - 1])) / 4.0
Q1 = PI * Rf ** 2 * hi / 3.0
Q2 = PI * R[Nf - 1] ** 2 * (hi - (Lf - SumLen[Nf - 1])) / 3.0
Xci[Nf] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)

else:
if Rf * 2.0 == Dnmm:
Xci[Nf] = Lf / 2.0
else:
hi = Rf * Lf / (Rf - Rnmm)
xc1 = Lf - hi / 4.0
xc2 = - (hi - Lf) / 4.0
Q1 = PI * Rf ** 2 * hi / 3.0
Q2 = PI * Rnmm ** 2 * (hi - Lf) / 3.0
Xci[Nf] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)

work1 = - Mn * Top / 4.0
for i in range(Nf):
work1 += Mfw[i] * Xci[i]
Xcf = work1 / (Mf + Mn)

# 计算后体的质心
if BaseDiam[Nf] == Rf * 2.0:
Xci[Nf] = SumLen[Nf] - (SumLen[Nf] - Lf) / 2.0
else:
hi = R[Nf] * (SumLen[Nf] - Lf) / (R[Nf] - Rf)
xc1 = SumLen[Nf] - hi / 4.0
xc2 = SumLen[Nf] - (SumLen[Nf] - Lf) - (hi - (SumLen[Nf] - Lf)) / 4.0
Q1 = PI * R[Nf] ** 2 * hi / 3.0
Q2 = PI * Rf ** 2 * (hi - (SumLen[Nf] - Lf)) / 3.0
Xci[Nf] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)

for i in range(Nf + 1, Ncon):
if BaseDiam[i] == BaseDiam[i - 1]:
Xci[i] = SumLen[i] - ConeLen[i] / 2.0
else:
hi = R[i] * ConeLen[i] / (R[i] - R[i - 1])
xc1 = SumLen[i] - hi / 4.0
xc2 = SumLen[i] - ConeLen[i] - (hi - ConeLen[i]) / 4.0
Q1 = PI * R[i] ** 2 * hi / 3.0
Q2 = PI * R[i - 1] ** 2 * (hi - ConeLen[i]) / 3.0
Xci[i] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)

work1 = 0.0
for i in range(Nf, Ncon):
work1 += Maw[i] * Xci[i]
Xca = work1 / Ma

# 计算腔体的质心
if RLh == RRh:
Xch = Lmm - Lh / 2.0
else:
hh = RRh * Lh / (RRh - RLh)
xc1h = Lmm - hh / 4.0
xc2h = Lmm - Lh - (hh - Lh) / 4.0
Q1h = PI * RRh ** 2 * hh / 3.0
Q2h = PI * RLh ** 2 * (hh - Lh) / 3.0
Xch = (Q1h * xc1h - Q2h * xc2h) / (Q1h - Q2h)

# 计算模型质心
Xc = (Xcf * (Mf + Mn) + Xca * Ma) / (Mf + Mn + Ma)

if Lf == 0.0:
Xc = Xca
elif Lf == Lmm:
Xc = Xcf

# 考虑腔体
if (Lh > 0.0 and RLh >= 0.0 and RRh > 0.0) or (Lh > 0.0 and RLh > 0.0 and RRh >= 0.0):
if Lf <= Lhx:
Xc = (Xc * (Mf + Ma + Mn) - Xch * (Qh * Rhoa / 1e3)) / (Mn + Mf + Ma - (Qh * Rhoa / 1e3))
elif Lf == Lmm:
Xc = (Xcf * (Mf + Mn) - Xch * (Qh * Rhof / 1e3)) / (Mn + Mf - (Qh * Rhof / 1e3))
else:
if DLh == DRh:
Xcha = Lmm - (Lmm - Lf) / 2.0
Xchf = Lf - (Lf - Lhx) / 2.0
else:
hhf = Rfh * (Lf - Lhx) / (Rfh - RLh)
xc1hf = Lf - hhf / 4.0
xc2hf = Lf - (Lf - Lhx) - (hhf - (Lf - Lhx)) / 4.0
Q1hf = PI * Rfh ** 2 * hhf / 3.0
Q2hf = PI * RLh ** 2 * (hhf - (Lf - Lhx)) / 3.0
Xchf = (Q1hf * xc1hf - Q2hf * xc2hf) / (Q1hf - Q2hf)

hha = RRh * (Lmm - Lf) / (RRh - Rfh)
xc1ha = Lmm - hha / 4.0
xc2ha = Lmm - (Lmm - Lf) - (hha - (Lmm - Lf)) / 4.0
Q1ha = PI * RRh ** 2 * hha / 3.0
Q2ha = PI * Rfh ** 2 * (hha - (Lmm - Lf)) / 3.0
Xcha: float = (Q1ha * xc1ha - Q2ha * xc2ha) / (Q1ha - Q2ha)

Xc = (Xcf * (Mf + Mn) + Xca * Ma - Xcha * (Qha * Rhoa / 1e3) - Xchf * (Qhf * Rhof / 1e3)) / (
Mf + Ma + Mn - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3))

if Rhoh != 0.0:
if Lhx >= Lf:
Xc = (Xc * (Mf + Ma + Mn - (Qh * Rhoa / 1e3)) + Xch * Mh) / (Mn + Mh + Mf + Ma - (Qh * Rhoa / 1e3))
else:
Xc = (Xc * (Mf + Mn + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3)) + Xch * Mh) / (
Mh + Mf + Mn + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3))

Xc = Xc / Lmm # 质心位置与模型长度相关

# 计算转动惯量
if Beta == 180.0:
Iof = 0.0
else:
Iof = Rnmm ** 2 * Top ** 3 * (0.2 * Rnmm ** 2 / Top ** 2 + 2.0 / 15.0)

# 前体
# 如果不是第一个
if Nf > 0:
if BaseDiam[0] == Dnmm:
Iof += Rnmm ** 2 * ConeLen[0] * (Rnmm ** 2 + 4.0 * ConeLen[0] ** 2 / 3.0)
else:
work2 = 0.5 * (BaseDiam[0] - Dnmm) / ConeLen[0]
work3 = Rnmm
work4 = work3 ** 2 * Lmm ** 3 * Part[0] ** 3 / 3.0 + work3 * work2 * Lmm ** 4 * Part[
0] ** 4 / 2.0 + work2 ** 2 * Lmm ** 5 * Part[0] ** 5 / 5.0
Iof += 0.2 * ((work3 + work2 * ConeLen[0]) ** 5 - work3 ** 5) / work2 + 4.0 * work4

for i in range(1, Nf - 1):
if BaseDiam[i] == BaseDiam[i - 1]:
Iof += (0.5 * BaseDiam[i]) ** 2 * (
(0.5 * BaseDiam[i]) ** 2 * ConeLen[i] + 4.0 * (Part[i] * Lmm) ** 3 - (
Part[i - 1] * Lmm) ** 3) / 3.0
else:
work2 = 0.5 * (BaseDiam[i] - BaseDiam[i - 1]) / ConeLen[i]
work3 = 0.5 * BaseDiam[i - 1] - Part[i - 1] * Lmm * work2
work4 = work3 ** 2 * Lmm ** 3 * (
Part[i] ** 3 - Part[i - 1] ** 3) / 3.0 + work3 * work2 * Lmm ** 4 * (
Part[i] ** 4 - Part[i - 1] ** 4) / 2.0 + work2 ** 2 * Lmm ** 5 * (
Part[i] ** 5 - Part[i - 1] ** 5) / 5.0
Iof += 0.2 * ((work3 + work2 * Part[i] * Lmm) ** 5 - (
work3 + work2 * Part[i - 1] * Lmm) ** 5) / work2 + 4.0 * work4

if Rf * 2.0 == BaseDiam[Nf - 1]:
Iof += (0.5 * 2.0 * Rf) ** 2 * (
(0.5 * 2.0 * Rf) ** 2 * (Lf - SumLen[Nf - 1]) + 4.0 * (Lf ** 3 - SumLen[Nf - 1] ** 3) / 3.0)
else:
work2 = 0.5 * (2.0 * Rf - BaseDiam[Nf - 1]) / (Lf - SumLen[Nf - 1])
work3 = 0.5 * BaseDiam[Nf - 1] - SumLen[Nf - 1] * work2
work4 = work3 ** 2 * (Lf ** 3 - SumLen[Nf - 1] ** 3) / 3.0 + work3 * work2 * (
Lf ** 4 - SumLen[Nf - 1] ** 4) / 2.0 + work2 ** 2 * (Lf ** 5 - SumLen[Nf - 1] ** 5) / 5.0
Iof += 0.2 * ((work3 + work2 * Lf) ** 5 - (work3 + work2 * SumLen[Nf - 1]) ** 5) / work2 + 4.0 * work4

else:
if 2.0 * Rf == Dnmm:
Iof += Rnmm ** 2 * Lf * (Rnmm ** 2 + 4.0 * Lf ** 2 / 3.0)
else:
work2 = 0.5 * (2.0 * Rf - Dnmm) / Lf
work3 = Rnmm
work4 = work3 ** 2 * Lf ** 3 / 3.0 + work3 * work2 * Lf ** 4 / 2.0 + work2 ** 2 * Lf ** 5 / 5.0
Iof += 0.2 * ((work3 + work2 * Lf) ** 5 - work3 ** 5) / work2 + 4.0 * work4
# 单位是kg*m^2
Iof = Iof * PI * Rhof / 4e12

# 后体
if Lf == 0.0:
if Beta == 180.0:
Ioa = 0.0
else:
Ioa = Rnmm ** 2 * Top ** 3 * (0.2 * Rnmm ** 2 / Top ** 2 + 2.0 / 15.0)
else:
Ioa = 0.0

if BaseDiam[Nf] == Rf * 2.0:
Ioa += (0.5 * BaseDiam[Nf]) ** 2 * (
(0.5 * BaseDiam[Nf]) ** 2 * (SumLen[Nf] - Lf) + 4.0 * (SumLen[Nf] ** 3 - Lf ** 3) / 3.0)
else:
work2 = 0.5 * (BaseDiam[Nf] - 2.0 * Rf) / (SumLen[Nf] - Lf)
work3 = 0.5 * (2.0 * Rf) - Lf * work2
work4 = work3 ** 2 * (SumLen[Nf] ** 3 - Lf ** 3) / 3.0 + work3 * work2 * (
SumLen[Nf] ** 4 - Lf ** 4) / 2.0 + work2 ** 2 * (SumLen[Nf] ** 5 - Lf ** 5) / 5.0
Ioa += 0.2 * ((work3 + work2 * SumLen[Nf]) ** 5 - (work3 + work2 * Lf) ** 5) / work2 + 4.0 * work4

for i in range(Nf + 1, Ncon):
if BaseDiam[i] == BaseDiam[i - 1]:
Ioa += (0.5 * BaseDiam[i]) ** 2 * (
(0.5 * BaseDiam[i]) ** 2 * ConeLen[i] + 4.0 * (Part[i] * Lmm) ** 3 - (
Part[i - 1] * Lmm) ** 3) / 3.0
else:
work2 = 0.5 * (BaseDiam[i] - BaseDiam[i - 1]) / ConeLen[i]
work3 = 0.5 * BaseDiam[i - 1] - Part[i - 1] * Lmm * work2
work4 = work3 ** 2 * Lmm ** 3 * (Part[i] ** 3 - Part[i - 1] ** 3) / 3.0 + work3 * work2 * Lmm ** 4 * (
Part[i] ** 4 - Part[i - 1] ** 4) / 2.0 + work2 ** 2 * Lmm ** 5 * (
Part[i] ** 5 - Part[i - 1] ** 5) / 5.0
Ioa += 0.2 * ((work3 + work2 * Part[i] * Lmm) ** 5 - (
work3 + work2 * Part[i - 1] * Lmm) ** 5) / work2 + 4.0 * work4

Ioa = Ioa * PI * Rhoa / 4e12

# 完整模型
Io = Iof + Ioa

if Lf == 0.0:
Io = Ioa
elif Lf == Lmm:
Io = Iof

# 考虑腔体
if (Lh > 0.0 and RLh >= 0.0 and RRh > 0.0) or (Lh > 0.0 and RLh > 0.0 and RRh >= 0.0):
if RRh == RLh:
Iohw = (0.5 * DLh) ** 2 * ((0.5 * DRh) ** 2 * Lh + 4.0 * (Lmm ** 3 - Lhx ** 3) / 3.0)
else:
work2 = 0.5 * (DRh - DLh) / Lh
work3 = 0.5 * DLh - Lhx * work2
work4 = work3 ** 2 * (Lmm ** 3 - Lhx ** 3) / 3.0 + work3 * work2 * (
Lmm ** 4 - Lhx ** 4) / 2.0 + work2 ** 2 * (Lmm ** 5 - Lhx ** 5) / 5.0
Iohw = 0.2 * ((work3 + work2 * Lmm) ** 5 - (work3 + work2 * Lhx) ** 5) / work2 + 4.0 * work4

if Lf <= Lhx:
Ioh = Iohw * PI * Rhoa / 4e12
else:
if RRh == RLh:
Iohf = (0.5 * DLh) ** 2 * ((0.5 * DLh) ** 2 * (Lf - Lhx) + 4.0 * (Lf ** 3 - Lhx ** 3) / 3.0)
else:
work2 = 0.5 * (2.0 * Rfh - DLh) / (Lf - Lhx)
work3 = 0.5 * DLh - Lhx * work2
work4 = work3 ** 2 * (Lf ** 3 - Lhx ** 3) / 3.0 + work3 * work2 * (
Lf ** 4 - Lhx ** 4) / 2.0 + work2 ** 2 * (Lf ** 5 - Lhx ** 5) / 5.0
Iohf = 0.2 * ((work3 + work2 * Lf) ** 5 - (work3 + work2 * Lhx) ** 5) / work2 + 4.0 * work4
Iohf = Iohf * PI * Rhof / 4e12

if RRh == RLh:
Ioha = (0.5 * DLh) ** 2 * ((0.5 * DLh) ** 2 * (Lmm - Lf) + 4.0 * (Lmm ** 3 - Lf ** 3) / 3.0)
else:
work2 = 0.5 * (DRh - 2.0 * Rfh) / (Lmm - Lf)
work3 = Rfh - Lf * work2
work4 = work3 ** 2 * (Lmm ** 3 - Lf ** 3) / 3.0 + work3 * work2 * (
Lmm ** 4 - Lf ** 4) / 2.0 + work2 ** 2 * (Lmm ** 5 - Lf ** 5) / 5.0
Ioha = 0.2 * ((work3 + work2 * Lmm) ** 5 - (work3 + work2 * Lf) ** 5) / work2 + 4.0 * work4
Ioha = Ioha * PI * Rhoa / 4e12
Ioh = Iohf + Ioha

if Rhoh == 0.0:
Io = Io - Ioh
else:
Io = Io - Ioh + Iohw * PI * Rhoh / 4e12

# 计算总质量
TMkg = TMg / 1e3 # kg

# 计算质心处的转动惯量
Ic = Io - TMkg * (Xc * Lmm) ** 2 # kg*mm^2
###################
# Imid 好像定义了
# 公共变量Imid
self.Imid = Imid

# 总质量
self.TMkg = TMkg
# 模型质心位置
self.Xc = Xc
# Xp 在 CalcModel 中代表了模型的中段截面的相对位置
# 不知道是否共享了啊
self.Xp = Xp
# 模型质心转动惯量
self.Ic = Ic
# 模型总质量
self.TMg = TMg
# 模型平均密度
self.Rho = Rho
# 模型的总转动惯量
self.Io = Io
# 前体末端锥体编号
self.Nf = Nf
# 前体多边形节点个数
self.NPf = NPf
# 后体多边形节点个数
self.NPa = NPa