模型的体积、质量、质心位置和转动惯量计算
函数描述
计算模型的体积、质量、质心位置和转动惯量。
参数
- π:圆周率。
- Lmm:模型总长度(mm)。
- Top0:顶点位置的无量纲量。
- Rnmm:空化器半径(mm)。
- Ncon:模型节数。
- Part:每节的无量纲长度。
- Lf:前体长度(mm)。
- ConeLen:每节的长度(mm)。
- BaseDiam:每节的末端直径(mm)。
- Lh:腔体长度(mm)。
- DLh:腔体左直径(mm)。
- DRh:腔体右直径(mm)。
- ρf:前体材料密度(kg/m³)。
- ρa:后体材料密度(kg/m³)。
- ρh:腔体材料密度(kg/m³)。
返回值
- TMkg:模型总质量(kg)。
- Xc:质心位置(与模型长度相关)。
- Ic:质心处的转动惯量(kg*mm²)。
计算公式
1. 初始化变量
- SumLen:每节的累积长度(mm)。
- R:每节的半径(mm)。
- Qfw:前体各节的体积(mm³)。
- Qaw:后体各节的体积(mm³)。
- Mfw:前体各节的质量(kg)。
- Maw:后体各节的质量(kg)。
- Xci:各节的质心位置(mm)。
2. 计算顶点位置和空化器体积
Top=Top0×Lmm
Qn=π×Rnmm2×Top/3
3. 计算每节的长度和半径
SumLen[i]=Part[i]×Lmm
R[i]=BaseDiam[i]/2
4. 找到前体末端的锥体编号
Lf>SumLen[i]
Nf=i
NPf=2×i+4
NPa=2×Ncon−NPf+8
5. 计算腔体参数
RLh=DLh/2
RRh=DRh/2
Lhx=Lmm−Lh
Rfh=RLh+(Lf−Lhx)×(RRh−RLh)/Lh
6. 计算每节的体积
6.1 前体部分
Lf≤ConeLen[0]
Rf=Rnmm+Lf×(R[0]−Rnmm)/ConeLen[0]
Qfw[0]=π×Lf×(Rf2+Rnmm2+Rf×Rnmm)/3
Qaw[0]=π×(ConeLen[0]−Lf)×(R[0]2+Rf2+R[0]×Rf)/3
6.2 后体部分
Lf>SumLen[j]
Rf=R[j−1]+(Lf−SumLen[j−1])×(R[j]−R[j−1])/ConeLen[j]
Qfw[j]=π×(Lf−SumLen[j−1])×(Rf2+R[j−1]2+Rf×R[j−1])/3
Qaw[j]=π×(SumLen[j]−Lf)×(R[j]2+Rf2+Rf×R[j])/3
7. 计算每节的质量
Mfw[i]=ρf×Qfw[i]/1000
Maw[i]=ρa×Qaw[i]/1000
8. 计算总体积
Qf=∑Qfw
Qa=∑Qaw
Q=Qf+Qa+Qn
9. 计算腔体体积
Qh=π×Lh×(RLh2+RLh×RRh+RRh2)/3
10. 计算模型质量
Lf=0
Mn=ρf×Qn/1000
Mf=ρf×Qf/1000
Ma=ρa×Qa/1000
Mh=ρh×Qh/1000
TMg=Mn+Mf+Ma
Lf≤Lhx
TMg=Mn+Mf+Ma−Qh×ρa/1000
11. 计算模型平均密度
ρ=1000×TMg/Q
12. 计算质心位置
Xc=(Xcf×(Mf+Mn)+Xca×Ma)/(Mf+Mn+Ma)
13. 考虑腔体
Lf≤Lhx
Xc=(Xc×(Mf+Ma+Mn)−Xch×(Qh×ρa/1000))/(Mn+Mf+Ma−(Qh×ρa/1000))
14. 计算转动惯量
β=180∘
Iof=0
Iof=Rnmm2×Top3×(0.2×Rnmm2/Top2+2/15)
Iof=∑(21×BaseDiam[i])2×((21×BaseDiam[i])2×ConeLen[i]+4×(Part[i]×Lmm)3−(Part[i−1]×Lmm)3)/3
Iof=Iof×π×ρf/4×1012
Ioa=Iof
Ioa=∑(21×BaseDiam[i])2×((21×BaseDiam[i])2×ConeLen[i]+4×(Part[i]×Lmm)3−(Part[i−1]×Lmm)3)/3
Ioa=Ioa×π×ρa/4×1012
Io=Iof+Ioa
Lf=0
Io=Ioa
Lf=Lmm
Io=Iof
Ic=Io−TMkg×(Xc×Lmm)2
Python代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
| def CalcModel(self): """ 计算模型的体积、质量、质心位置和转动惯量。
参数: PI (float): 圆周率。 Lmm (float): 模型总长度(mm)。 Top0 (float): 顶点位置的无量纲量。 Rnmm (float): 空化器半径(mm)。 Ncon (int): 模型节数。 Part (list of float): 每节的无量纲长度。 Lf (float): 前体长度(mm)。 ConeLen (list of float): 每节的长度(mm)。 BaseDiam (list of float): 每节的末端直径(mm)。 Lh (float): 腔体长度(mm)。 DLh (float): 腔体左直径(mm)。 DRh (float): 腔体右直径(mm)。 Rhof (float): 前体材料密度(kg/m^3)。 Rhoa (float): 后体材料密度(kg/m^3)。 Rhoh (float): 腔体材料密度(kg/m^3)。
返回: TMkg (float): 模型总质量(kg)。 Xc (float): 质心位置(与模型长度相关)。 Ic (float): 转动惯量(与质心相关,kg*mm^2)。 """ DPI = self.DPI Ncon = self.Ncon PI = self.PI Top0 = self.Top0 Lmm = self.Lmm Rnmm = self.Rnmm Part = self.Part Lf = self.Lf ConeLen = self.ConeLen BaseDiam = self.BaseDiam Lh = self.Lh DLh = self.DLh DRh = self.DRh Rhof = self.Rhof Rhoa = self.Rhoa Rhoh = self.Rhoh Dnmm = self.Dnmm Beta = self.Beta
SumLen = np.zeros(DPI) R = np.zeros(DPI) Qfw: ndarray = np.zeros(DPI) Qaw = np.zeros(DPI) Mfw = np.zeros(DPI) Maw = np.zeros(DPI) Xci = np.zeros(DPI)
Top = Top0 * Lmm Qn = PI * Rnmm ** 2 * Top / 3.0
for i in range(Ncon): SumLen[i] = Part[i] * Lmm R[i] = BaseDiam[i] / 2.0
i = 0 while Lf > SumLen[i]: i += 1 Nf = i NPf = 2 * i + 4 NPa = 2 * Ncon - NPf + 8
RLh = DLh / 2.0 RRh = DRh / 2.0 Lhx = Lmm - Lh if Lf > Lhx: Rfh = RLh + (Lf - Lhx) * (RRh - RLh) / Lh
if Lf <= ConeLen[0]: Rf = Rnmm + Lf * (R[0] - Rnmm) / ConeLen[0] Qfw[0] = PI * Lf * (Rf ** 2 + Rnmm ** 2 + Rf * Rnmm) / 3.0 Qaw[0] = PI * (ConeLen[0] - Lf) * (R[0] ** 2 + Rf ** 2 + R[0] * Rf) / 3.0 for i in range(1, Ncon): Qfw[i] = 0.0 Qaw[i] = PI * ConeLen[i] * (R[i] ** 2 + R[i - 1] ** 2 + R[i] * R[i - 1]) / 3.0 else: for j in range(1, Ncon): if Lf <= SumLen[j]: Rf = R[j - 1] + (Lf - SumLen[j - 1]) * (R[j] - R[j - 1]) / ConeLen[j] Qfw[0] = PI * ConeLen[0] * (R[0] ** 2 + Rnmm ** 2 + R[0] * Rnmm) / 3.0 Qaw[0] = 0.0 for i in range(1, j): Qfw[i] = PI * ConeLen[i] * (R[i] ** 2 + R[i - 1] ** 2 + R[i] * R[i - 1]) / 3.0 Qaw[i] = 0.0 Qfw[j] = PI * (Lf - SumLen[j - 1]) * (Rf ** 2 + R[j - 1] ** 2 + Rf * R[j - 1]) / 3.0 Qaw[j] = PI * (SumLen[j] - Lf) * (R[j] ** 2 + Rf ** 2 + Rf * R[j]) / 3.0 for i in range(j + 1, Ncon): Qfw[i] = 0.0 Qaw[i] = PI * ConeLen[i] * (R[i] ** 2 + R[i - 1] ** 2 + R[i] * R[i - 1]) / 3.0 break
for i in range(Ncon): Mfw[i] = Rhof * Qfw[i] / 1e3 Maw[i] = Rhoa * Qaw[i] / 1e3
Qf = sum(Qfw) Qa = sum(Qaw) Q = Qf + Qa + Qn
Qh = PI * Lh * (RLh ** 2 + RLh * RRh + RRh ** 2) / 3.0
if Lf != 0.0: Mn = Rhof * Qn / 1e3 Mf = Rhof * Qf / 1e3 Ma = Rhoa * Qa / 1e3 Mh = Rhoh * Qh / 1e3 else: Mn = Rhoa * Qn / 1e3 Mf = 0.0 Ma = Rhoa * Qa / 1e3 Mh = Rhoh * Qh / 1e3
TMg = Mn + Mf + Ma if Lf <= Lhx: if Rhoh == 0.0: TMg = Mn + Mf + Ma - Qh * Rhoa / 1e3 else: TMg = Mn + Mf + Ma - Qh * Rhoa / 1e3 + Mh else: Qhf = PI * (Lf - Lhx) * (RLh ** 2 + Rfh * RLh + Rfh ** 2) / 3.0 Qha = PI * (Lmm - Lf) * (Rfh ** 2 + Rfh * RRh + RRh ** 2) / 3.0 if Rhoh == 0.0: TMg = Mn + Mf + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3) else: TMg = Mn + Mf + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3) + Mh
Rho = 1e3 * TMg / Q
Imid = 0 for i in range(1, Ncon): if BaseDiam[i] > BaseDiam[i - 1]: Imid = i if Imid == Ncon: Xp = 1.0 - 4.0 * Q / (PI * Lmm * BaseDiam[Ncon] ** 2) elif BaseDiam[Imid] > BaseDiam[Ncon] and 1.0 - Part[Imid] < 0.02: Lu = 1.0 / Part[Imid] Xp = (0.67 - 0.75 * Lu + 0.2 * Lu ** 2) / (1.0 - Lu + 0.25 * Lu ** 2) elif BaseDiam[Imid] == BaseDiam[Ncon]: Lu = 1.0 / Part[Imid] work = 0.5 * (BaseDiam[0] - Dnmm) / ConeLen[0] La = Lmm * Part[Imid] / BaseDiam[Imid] Xp = (0.73 + 0.67 * La * (Lu ** 2 - 1.0)) / (Lu * (1.57 + 1.33 * La * (Lu ** 2 - 1.0)))
if Nf > 1: if BaseDiam[0] == Dnmm: Xci[0] = ConeLen[0] / 2.0 else: hi = R[0] * ConeLen[0] / (R[0] - Rnmm) xc1 = SumLen[0] - hi / 4.0 xc2 = - (hi - ConeLen[0]) / 4.0 Q1 = PI * R[0] ** 2 * hi / 3.0 Q2 = PI * Rnmm ** 2 * (hi - ConeLen[0]) / 3.0 Xci[0] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)
for i in range(1, Nf - 1): if BaseDiam[i] == BaseDiam[i - 1]: Xci[i] = SumLen[i] - ConeLen[i] / 2.0 else: hi = R[i] * ConeLen[i] / (R[i] - R[i - 1]) xc1 = SumLen[i] - hi / 4.0 xc2 = SumLen[i] - ConeLen[i] - (hi - ConeLen[i]) / 4.0 Q1 = PI * R[i] ** 2 * hi / 3.0 Q2 = PI * R[i - 1] ** 2 * (hi - ConeLen[i]) / 3.0 Xci[i] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)
if Rf * 2.0 == BaseDiam[Nf - 1]: Xci[Nf] = Lf - (Lf - SumLen[Nf - 1]) / 2.0 else: hi = Rf * (Lf - SumLen[Nf - 1]) / (Rf - R[Nf - 1]) xc1 = Lf - hi / 4.0 xc2 = Lf - (Lf - SumLen[Nf - 1]) - (hi - (Lf - SumLen[Nf - 1])) / 4.0 Q1 = PI * Rf ** 2 * hi / 3.0 Q2 = PI * R[Nf - 1] ** 2 * (hi - (Lf - SumLen[Nf - 1])) / 3.0 Xci[Nf] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)
else: if Rf * 2.0 == Dnmm: Xci[Nf] = Lf / 2.0 else: hi = Rf * Lf / (Rf - Rnmm) xc1 = Lf - hi / 4.0 xc2 = - (hi - Lf) / 4.0 Q1 = PI * Rf ** 2 * hi / 3.0 Q2 = PI * Rnmm ** 2 * (hi - Lf) / 3.0 Xci[Nf] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)
work1 = - Mn * Top / 4.0 for i in range(Nf): work1 += Mfw[i] * Xci[i] Xcf = work1 / (Mf + Mn)
if BaseDiam[Nf] == Rf * 2.0: Xci[Nf] = SumLen[Nf] - (SumLen[Nf] - Lf) / 2.0 else: hi = R[Nf] * (SumLen[Nf] - Lf) / (R[Nf] - Rf) xc1 = SumLen[Nf] - hi / 4.0 xc2 = SumLen[Nf] - (SumLen[Nf] - Lf) - (hi - (SumLen[Nf] - Lf)) / 4.0 Q1 = PI * R[Nf] ** 2 * hi / 3.0 Q2 = PI * Rf ** 2 * (hi - (SumLen[Nf] - Lf)) / 3.0 Xci[Nf] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)
for i in range(Nf + 1, Ncon): if BaseDiam[i] == BaseDiam[i - 1]: Xci[i] = SumLen[i] - ConeLen[i] / 2.0 else: hi = R[i] * ConeLen[i] / (R[i] - R[i - 1]) xc1 = SumLen[i] - hi / 4.0 xc2 = SumLen[i] - ConeLen[i] - (hi - ConeLen[i]) / 4.0 Q1 = PI * R[i] ** 2 * hi / 3.0 Q2 = PI * R[i - 1] ** 2 * (hi - ConeLen[i]) / 3.0 Xci[i] = (Q1 * xc1 - Q2 * xc2) / (Q1 - Q2)
work1 = 0.0 for i in range(Nf, Ncon): work1 += Maw[i] * Xci[i] Xca = work1 / Ma
if RLh == RRh: Xch = Lmm - Lh / 2.0 else: hh = RRh * Lh / (RRh - RLh) xc1h = Lmm - hh / 4.0 xc2h = Lmm - Lh - (hh - Lh) / 4.0 Q1h = PI * RRh ** 2 * hh / 3.0 Q2h = PI * RLh ** 2 * (hh - Lh) / 3.0 Xch = (Q1h * xc1h - Q2h * xc2h) / (Q1h - Q2h)
Xc = (Xcf * (Mf + Mn) + Xca * Ma) / (Mf + Mn + Ma)
if Lf == 0.0: Xc = Xca elif Lf == Lmm: Xc = Xcf
if (Lh > 0.0 and RLh >= 0.0 and RRh > 0.0) or (Lh > 0.0 and RLh > 0.0 and RRh >= 0.0): if Lf <= Lhx: Xc = (Xc * (Mf + Ma + Mn) - Xch * (Qh * Rhoa / 1e3)) / (Mn + Mf + Ma - (Qh * Rhoa / 1e3)) elif Lf == Lmm: Xc = (Xcf * (Mf + Mn) - Xch * (Qh * Rhof / 1e3)) / (Mn + Mf - (Qh * Rhof / 1e3)) else: if DLh == DRh: Xcha = Lmm - (Lmm - Lf) / 2.0 Xchf = Lf - (Lf - Lhx) / 2.0 else: hhf = Rfh * (Lf - Lhx) / (Rfh - RLh) xc1hf = Lf - hhf / 4.0 xc2hf = Lf - (Lf - Lhx) - (hhf - (Lf - Lhx)) / 4.0 Q1hf = PI * Rfh ** 2 * hhf / 3.0 Q2hf = PI * RLh ** 2 * (hhf - (Lf - Lhx)) / 3.0 Xchf = (Q1hf * xc1hf - Q2hf * xc2hf) / (Q1hf - Q2hf)
hha = RRh * (Lmm - Lf) / (RRh - Rfh) xc1ha = Lmm - hha / 4.0 xc2ha = Lmm - (Lmm - Lf) - (hha - (Lmm - Lf)) / 4.0 Q1ha = PI * RRh ** 2 * hha / 3.0 Q2ha = PI * Rfh ** 2 * (hha - (Lmm - Lf)) / 3.0 Xcha: float = (Q1ha * xc1ha - Q2ha * xc2ha) / (Q1ha - Q2ha)
Xc = (Xcf * (Mf + Mn) + Xca * Ma - Xcha * (Qha * Rhoa / 1e3) - Xchf * (Qhf * Rhof / 1e3)) / ( Mf + Ma + Mn - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3))
if Rhoh != 0.0: if Lhx >= Lf: Xc = (Xc * (Mf + Ma + Mn - (Qh * Rhoa / 1e3)) + Xch * Mh) / (Mn + Mh + Mf + Ma - (Qh * Rhoa / 1e3)) else: Xc = (Xc * (Mf + Mn + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3)) + Xch * Mh) / ( Mh + Mf + Mn + Ma - (Qha * Rhoa / 1e3) - (Qhf * Rhof / 1e3))
Xc = Xc / Lmm
if Beta == 180.0: Iof = 0.0 else: Iof = Rnmm ** 2 * Top ** 3 * (0.2 * Rnmm ** 2 / Top ** 2 + 2.0 / 15.0)
if Nf > 0: if BaseDiam[0] == Dnmm: Iof += Rnmm ** 2 * ConeLen[0] * (Rnmm ** 2 + 4.0 * ConeLen[0] ** 2 / 3.0) else: work2 = 0.5 * (BaseDiam[0] - Dnmm) / ConeLen[0] work3 = Rnmm work4 = work3 ** 2 * Lmm ** 3 * Part[0] ** 3 / 3.0 + work3 * work2 * Lmm ** 4 * Part[ 0] ** 4 / 2.0 + work2 ** 2 * Lmm ** 5 * Part[0] ** 5 / 5.0 Iof += 0.2 * ((work3 + work2 * ConeLen[0]) ** 5 - work3 ** 5) / work2 + 4.0 * work4
for i in range(1, Nf - 1): if BaseDiam[i] == BaseDiam[i - 1]: Iof += (0.5 * BaseDiam[i]) ** 2 * ( (0.5 * BaseDiam[i]) ** 2 * ConeLen[i] + 4.0 * (Part[i] * Lmm) ** 3 - ( Part[i - 1] * Lmm) ** 3) / 3.0 else: work2 = 0.5 * (BaseDiam[i] - BaseDiam[i - 1]) / ConeLen[i] work3 = 0.5 * BaseDiam[i - 1] - Part[i - 1] * Lmm * work2 work4 = work3 ** 2 * Lmm ** 3 * ( Part[i] ** 3 - Part[i - 1] ** 3) / 3.0 + work3 * work2 * Lmm ** 4 * ( Part[i] ** 4 - Part[i - 1] ** 4) / 2.0 + work2 ** 2 * Lmm ** 5 * ( Part[i] ** 5 - Part[i - 1] ** 5) / 5.0 Iof += 0.2 * ((work3 + work2 * Part[i] * Lmm) ** 5 - ( work3 + work2 * Part[i - 1] * Lmm) ** 5) / work2 + 4.0 * work4
if Rf * 2.0 == BaseDiam[Nf - 1]: Iof += (0.5 * 2.0 * Rf) ** 2 * ( (0.5 * 2.0 * Rf) ** 2 * (Lf - SumLen[Nf - 1]) + 4.0 * (Lf ** 3 - SumLen[Nf - 1] ** 3) / 3.0) else: work2 = 0.5 * (2.0 * Rf - BaseDiam[Nf - 1]) / (Lf - SumLen[Nf - 1]) work3 = 0.5 * BaseDiam[Nf - 1] - SumLen[Nf - 1] * work2 work4 = work3 ** 2 * (Lf ** 3 - SumLen[Nf - 1] ** 3) / 3.0 + work3 * work2 * ( Lf ** 4 - SumLen[Nf - 1] ** 4) / 2.0 + work2 ** 2 * (Lf ** 5 - SumLen[Nf - 1] ** 5) / 5.0 Iof += 0.2 * ((work3 + work2 * Lf) ** 5 - (work3 + work2 * SumLen[Nf - 1]) ** 5) / work2 + 4.0 * work4
else: if 2.0 * Rf == Dnmm: Iof += Rnmm ** 2 * Lf * (Rnmm ** 2 + 4.0 * Lf ** 2 / 3.0) else: work2 = 0.5 * (2.0 * Rf - Dnmm) / Lf work3 = Rnmm work4 = work3 ** 2 * Lf ** 3 / 3.0 + work3 * work2 * Lf ** 4 / 2.0 + work2 ** 2 * Lf ** 5 / 5.0 Iof += 0.2 * ((work3 + work2 * Lf) ** 5 - work3 ** 5) / work2 + 4.0 * work4 Iof = Iof * PI * Rhof / 4e12
if Lf == 0.0: if Beta == 180.0: Ioa = 0.0 else: Ioa = Rnmm ** 2 * Top ** 3 * (0.2 * Rnmm ** 2 / Top ** 2 + 2.0 / 15.0) else: Ioa = 0.0
if BaseDiam[Nf] == Rf * 2.0: Ioa += (0.5 * BaseDiam[Nf]) ** 2 * ( (0.5 * BaseDiam[Nf]) ** 2 * (SumLen[Nf] - Lf) + 4.0 * (SumLen[Nf] ** 3 - Lf ** 3) / 3.0) else: work2 = 0.5 * (BaseDiam[Nf] - 2.0 * Rf) / (SumLen[Nf] - Lf) work3 = 0.5 * (2.0 * Rf) - Lf * work2 work4 = work3 ** 2 * (SumLen[Nf] ** 3 - Lf ** 3) / 3.0 + work3 * work2 * ( SumLen[Nf] ** 4 - Lf ** 4) / 2.0 + work2 ** 2 * (SumLen[Nf] ** 5 - Lf ** 5) / 5.0 Ioa += 0.2 * ((work3 + work2 * SumLen[Nf]) ** 5 - (work3 + work2 * Lf) ** 5) / work2 + 4.0 * work4
for i in range(Nf + 1, Ncon): if BaseDiam[i] == BaseDiam[i - 1]: Ioa += (0.5 * BaseDiam[i]) ** 2 * ( (0.5 * BaseDiam[i]) ** 2 * ConeLen[i] + 4.0 * (Part[i] * Lmm) ** 3 - ( Part[i - 1] * Lmm) ** 3) / 3.0 else: work2 = 0.5 * (BaseDiam[i] - BaseDiam[i - 1]) / ConeLen[i] work3 = 0.5 * BaseDiam[i - 1] - Part[i - 1] * Lmm * work2 work4 = work3 ** 2 * Lmm ** 3 * (Part[i] ** 3 - Part[i - 1] ** 3) / 3.0 + work3 * work2 * Lmm ** 4 * ( Part[i] ** 4 - Part[i - 1] ** 4) / 2.0 + work2 ** 2 * Lmm ** 5 * ( Part[i] ** 5 - Part[i - 1] ** 5) / 5.0 Ioa += 0.2 * ((work3 + work2 * Part[i] * Lmm) ** 5 - ( work3 + work2 * Part[i - 1] * Lmm) ** 5) / work2 + 4.0 * work4
Ioa = Ioa * PI * Rhoa / 4e12
Io = Iof + Ioa
if Lf == 0.0: Io = Ioa elif Lf == Lmm: Io = Iof
if (Lh > 0.0 and RLh >= 0.0 and RRh > 0.0) or (Lh > 0.0 and RLh > 0.0 and RRh >= 0.0): if RRh == RLh: Iohw = (0.5 * DLh) ** 2 * ((0.5 * DRh) ** 2 * Lh + 4.0 * (Lmm ** 3 - Lhx ** 3) / 3.0) else: work2 = 0.5 * (DRh - DLh) / Lh work3 = 0.5 * DLh - Lhx * work2 work4 = work3 ** 2 * (Lmm ** 3 - Lhx ** 3) / 3.0 + work3 * work2 * ( Lmm ** 4 - Lhx ** 4) / 2.0 + work2 ** 2 * (Lmm ** 5 - Lhx ** 5) / 5.0 Iohw = 0.2 * ((work3 + work2 * Lmm) ** 5 - (work3 + work2 * Lhx) ** 5) / work2 + 4.0 * work4
if Lf <= Lhx: Ioh = Iohw * PI * Rhoa / 4e12 else: if RRh == RLh: Iohf = (0.5 * DLh) ** 2 * ((0.5 * DLh) ** 2 * (Lf - Lhx) + 4.0 * (Lf ** 3 - Lhx ** 3) / 3.0) else: work2 = 0.5 * (2.0 * Rfh - DLh) / (Lf - Lhx) work3 = 0.5 * DLh - Lhx * work2 work4 = work3 ** 2 * (Lf ** 3 - Lhx ** 3) / 3.0 + work3 * work2 * ( Lf ** 4 - Lhx ** 4) / 2.0 + work2 ** 2 * (Lf ** 5 - Lhx ** 5) / 5.0 Iohf = 0.2 * ((work3 + work2 * Lf) ** 5 - (work3 + work2 * Lhx) ** 5) / work2 + 4.0 * work4 Iohf = Iohf * PI * Rhof / 4e12
if RRh == RLh: Ioha = (0.5 * DLh) ** 2 * ((0.5 * DLh) ** 2 * (Lmm - Lf) + 4.0 * (Lmm ** 3 - Lf ** 3) / 3.0) else: work2 = 0.5 * (DRh - 2.0 * Rfh) / (Lmm - Lf) work3 = Rfh - Lf * work2 work4 = work3 ** 2 * (Lmm ** 3 - Lf ** 3) / 3.0 + work3 * work2 * ( Lmm ** 4 - Lf ** 4) / 2.0 + work2 ** 2 * (Lmm ** 5 - Lf ** 5) / 5.0 Ioha = 0.2 * ((work3 + work2 * Lmm) ** 5 - (work3 + work2 * Lf) ** 5) / work2 + 4.0 * work4 Ioha = Ioha * PI * Rhoa / 4e12 Ioh = Iohf + Ioha
if Rhoh == 0.0: Io = Io - Ioh else: Io = Io - Ioh + Iohw * PI * Rhoh / 4e12
TMkg = TMg / 1e3
Ic = Io - TMkg * (Xc * Lmm) ** 2 self.Imid = Imid
self.TMkg = TMkg self.Xc = Xc self.Xp = Xp self.Ic = Ic self.TMg = TMg self.Rho = Rho self.Io = Io self.Nf = Nf self.NPf = NPf self.NPa = NPa
|